본문 바로가기

전체 글57

47. 푸리에 코사인, 사인 변환 47.1. Fourier Cosine and Sine Transforms. 이전 포스팅에서 $f(x)$가 우함수일 경우 푸리에 코사인 적분을 할 수 있다는 것을 확인했습니다. $f(x) = \int_{0}^{\infty} A(w)\cos (wx) dw\cdots(1a)$ $A(w) = \frac {2}{\pi} \int_{0}^{\infty} f(v) \cos (wv) dv \cdots (1b)$ (1)의 $A(w)$를 $A(w) = \sqrt {\frac {2}{\pi}}\hat {f_c}(w)$라고 합시다. (1b)의 적분 변수 $v$를 모두 $x$로 바꿉시다. 그렇다면 다음과 같이 $\hat {f_c}(w)$와 $f(x)$의 관계를 쓸 수 있습니다. $\hat {f_c}(w) = \sqrt {\fr.. 2020. 7. 13.
46. 푸리에 적분 46.1. Fourier Integral. 주기 함수 $f(x)$를 푸리에 급수로 다음과 같이 나타낼 수 있습니다. $f(x) = a_0 + \sum_{n=1}^{\infty} a_n\cos \left(\frac {2n\pi}{p}x\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac {2n\pi}{p}x\right) \cdots (1)$ 하지만 $f(x)$가 주기 함수여야 성립하는 한계가 있습니다. $f(x)$가 주기의 크기가 매우 큰 함수라고 해봅시다. $f(x)$의 주기를 $p = 2L$이라 합시다. (1)은 다음과 같이 정리됩니다. $f(x) = a_0 + \sum_{n=1}^{\infty} a_n\cos \left(\frac {n\pi}{L}x\right) +.. 2020. 7. 7.
45. 우함수와 기함수의 푸리에 급수 $f(x)$의 푸리에 급수를 써봅시다. $$f(x) = a_0 + \sum_{n=1}^{\infty} a_n\cos \left(\frac {2n\pi}{p}x\right) + \sum_{n=1}^{\infty} b_n \sin \left(\frac {2n\pi}{p}x\right) \cdots (1)$$ $$a_0 = \frac {1}{p} \int_{-\frac {p}{2}}^{\frac {p}{2}} f(x)dx \cdots (2)$$ $$a_n = \frac {2}{p} \int_{-\frac {p}{2}}^{\frac {p}{2}} f(x)\cos \left(\frac {2n\pi}{p}x\right)dx \cdots (3)$$ $$b_n = \frac {2}{p} \int_{-\frac {p}{.. 2020. 6. 28.
44. 푸리에 급수 44.1. Fourier Series. 자연수 $n$, 모든 $x$에 대해 다음 식을 만족하는 함수를 주기 함수라고 합니다. $f(x+np) = f(x) \cdots (1)$ (1)의 $p$를 주기 함수의 주기라고 합니다. 대표적인 주기 함수로 삼각 함수가 있습니다. 푸리에 급수는 주기 함수를 삼각 함수 형태로 나타내는 도구입니다. 임의의 주기 함수를 $f(x)$라 하면 $f(x)$의 푸리에 급수는 다음과 같습니다. $f(x) = a_0 + \sum_{n = 1}^{\infty} \left(a_n\cos \left(\frac {2n\pi}{p}x\right) + b_n \sin \left(\frac {2n\pi}{p}x\right)\right) \cdots (2)$ (2)의 계수 $a_0$, $a_n$,.. 2020. 6. 28.
43. 스토크스(Stokes) 정리 43.1. Stokes' Theorem. 선적분과 이중적분을 바꾸어주는 도구가 Green 정리였고, 면적분과 삼중적분을 바꾸어 주는 도구가 발산 정리였습니다. Stokes 정리는 선적분과 면적분을 서로 바꾸어주는 도구입니다. 곡면 $S$가 공간에 존재하고 $S$의 경계 곡선을 $C$라고 합시다. $S$에서 연속인 벡터 함수 $\mathbf {F}$가 존재하고 $\mathbf {F}$의 편도함수도 연속 함수라고 하면 Stokes 정리는 다음과 같습니다. $\int \int_{S} (\nabla \times \mathbf {F}) \cdot \mathbf {n} dA = \oint_{C} \mathbf {F} \cdot \mathbf {r}'(s) ds \cdots (1)$ (1)의 $\mathbf {n}$.. 2020. 6. 26.
42. 가우스의 발산 정리 가우스의 발산 정리는 삼중적분을 면적분으로 바꾸어주는 도구입니다. 삼차원 공간에 닫혀 있는 공간 $T$가 존재하고, $T$의 경계 곡면을 $S$라 합시다. 벡터 함수 $\mathbf {F}$가 주어지고 $T$에서 $\mathbf {F}$가 연속이고 연속인 편도함수가 존재하면, 다음 식을 발산 정리라고 합니다. $\int\!\int\!\int_{T} \nabla \cdot \mathbf {F} dV = \int \int_{S} \mathbf {F} \cdot \mathbf {n} dA \cdots (1)$ 성분으로 나타내 봅시다. $\mathbf {F} = [F_1,F_2,F_3]$, $\mathbf {n} = [\cos \alpha, \cos \beta, \cos \gamma]$라 합시다. 이때 $\al.. 2020. 6. 23.
41. 면적분 41.1. Surface Integral. 곡선을 매개변수로 나타내는데 필요한 변수의 개수는 1개였습니다. 그렇다면 곡면을 매개변수로 나타내는데 필요한 변수의 개수는 2개임을 추론할 수 있습니다. [그림 1]을 참고하면 쉽게 이해할 수 있습니다. 곡면 매개 변수가 두 개이기 때문에 두 매개변수가 만들어내는 영역 $R$이 존재합니다. 매개 변수로 표현한 곡면의 위치 벡터가 다음과 같다고 합시다. $\mathbf {r}(u, v) = [x(u, v), y(u, v), z(u, v)] = x(u, v)\mathbf {i} + y(u, v)\mathbf {j} + z(u, v)\mathbf {k} \cdots (1)$ 곡면 위의 모든 점에서 접평면이 존재하고, 그 접평면의 법선 벡터는 이전 포스팅 Gradien.. 2020. 6. 22.
40. 그린(Green) 정리 40.1. Green's Theorem in the Plain. Green 정리는 선적분과 이중적분간을 변환시켜주는 도구입니다. $xy$평면 위에 폐곡선 $C$가 존재하고 $C$가 이루는 닫힌 면을 $R$이라고 합시다. $F_1(x, y)$, $F_2(x, y)$가 연속 함수이고 $R$ 내에 연속인 편도함수 $\frac {\partial F_1}{\partial y}$, $\frac {\partial F_2}{\partial x}$가 존재한다고 합시다. Green 정리는 다음과 같습니다. $\int \int_{R} \left( \frac {\partial F_2}{\partial x} - \frac {\partial F_1}{\partial y} \right) dxdy = \oint_{C}(F_1dx +.. 2020. 6. 22.
39. 적분 경로의 독립 39.1. Path Dependence. 선적분은 구간의 시점과 종점뿐만 아니라, 적분 경로에 따라서도 적분 결과가 달라집니다. 다음 예시를 풀어 보면서 확인해봅시다. Ex) 1. 시점과 종점이 같지만 적분 경로가 다른 두 선적분의 결과를 비교해 봅시다. [그림 1]의 $C_1$은 $\mathbf {r}_1(t) = [t, t,0]$을 따르고, $C_2$는 $\mathbf {r}_2(t) = [t, t^2,0]$이고, 두 경로 모두 구간 $0 \leq t \leq 1$입니다. $\mathbf {F} = [0, xy,0]$의 각 경로에 따른 선적분을 비교해 봅시다. $C_1$의 선적분을 먼저 구해봅시다. $\mathbf {r}_1$을 $\mathbf {F}$에 대입해봅시다. $\mathbf {F}(\mat.. 2020. 6. 19.