본문 바로가기

라플라스 변환3

20. 라플라스 변환 형태의 미분과 적분 20.1. Differentiation of Transforms. Laplace transform 한 함수를 미분해 봅시다. $F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$ (1) (1)을 미분하면 다음과 같습니다. $\frac{dF}{ds} = -\int_{0}^{\infty} e^{-st} tf(t) dt$ (2) (2)의 우변은 다음과 같이 다시 쓸 수 있습니다. $-\int_{0}^{\infty} e^{-st}tf(t)dt = -\mathcal {L}(tf(t))$ (3) 따라서 결론을 정리하면 다음과 같습니다. $F'(s) = -\mathcal{L}(tf(t))$ (4) 예제를 풀어봅시다. Ex) 1. $\mathcal{L}(t\sin{\beta t})$ (4)에 주.. 2020. 5. 6.
16. 상미분방정식의 미분항과 적분항의 라플라스 변환 1. Laplace Transform of Derivatives 미분항의 Laplace transform은 다음과 같습니다. $L(f') = sL(f) - f(0)$ (1) $L(f'') = s^2L(f) - sf(0) - f'(0)$ (2) 증명해 보겠습니다. 먼저 Laplace transform 공식에 대입해 봅시다. $L(f') = \int_{0}^{\infty} e^{-st} f'(t) dt$ (3) 부분 적분법을 이용해 (3)의 적분항을 풀어줍니다. $\int_{0}^{\infty} e^{-st} f'(t)dt = e^{-st} f(t)|_{0}^{\infty} + s\int_{0}^{\infty} e^{-st} f(t) dt = sL(f) - f(0)$ $\therefore L(f') = sL.. 2020. 4. 28.
15. 라플라스 변환 Laplace transform에 대하여 작성할 차례가 왔네요. 미분방정식을 푸는 정말 강력한 도구입니다. 쉽게 생각하면 방정식을 다른 domain으로 바꾸어 풀기 쉬운 식으로 바꾸고, 구한 solution을 원래 domain으로 바꾸어 가져온다고 생각하시면 됩니다. 먼저 어떤 것이 Laplace transform인지 알아봅시다. 1. Laplace Transform $f(t)$의 모든 $t$에 대하여 $t \geq 0$이면, 이 함수의 Laplace transform 한 함수 $F(s)$는 $e^{-st}$를 곱하고 0부터 $\infty$까지 정적분 한 함수로 나타냅니다. 식으로 나타내면 다음과 같습니다. $F(s) = L(f) = \int_{0}^{\infty} e^{-st} f(t) dt$ (1) .. 2020. 4. 27.