전공 정리55 19. 합성곱(Convolution) 19.1. Convolution. Laplace transform은 다음과 같은 식을 만족함을 이미 알고 있습니다. $\mathcal {L}(f+g) = \mathcal {L}(f) + \mathcal {L}(g)$ (1) 하지만 (1)과는 다르게 곱의 변환은 일반적으로 만족하지 않습니다. $\mathcal{L}(fg) \neq \mathcal {L}(f)\mathcal {L}(g)$ (2) (2)를 확인하기 위해 예를 들어 봅시다. $f = e^t$, $g = 1$이라 하고 (2)의 좌변과 우변의 식으로 각각 계산해 봅시다. $\mathcal{L}(fg) = \mathcal {L}(e^t\cdot1) = \mathcal {L}(e^t) = \frac {1}{s-1}$ (3) $\mathcal{L}(f).. 2020. 5. 3. 18. 디랙 델타 함수 Dirac delta function이 어떤 함수인지를 알기 전에, 다음과 같은 함수를 정의합시다. $f_k(t-a) = \begin {cases} \frac {1}{k} & (a \leq t \leq a+k) \\ 0 & (otherwise) \end {cases}$ (1) (1)의 함수 $f_k(t-a)$의 0부터 $\infty$까지의 정적분 값을 $l_k$라 하고 이 값을 구해보도록 하겠습니다. $l_k = \int_{0}^{\infty} f_k(t-a)dt = \int_{a}^{a+k} \frac {1}{k} dt = 1$ (2) 공학에서 시간 구간 $a \leq t \leq a+k$ 에서 힘의 적분 값을 Impulse(충격량)라고 합니다. 즉 (2)에서 $l_k$는 $f_k(t-a)$라는 힘이 .. 2020. 5. 1. 17. 단위 계단 함수 Unit step function을 다음과 같은 함수로 정의합시다. $u(t-a) = \begin {cases}0 & (t a)\end {cases}$ (1) $t$가 $a$보다 크면 1이고, 작다면 0인 함수인 셈입니다. Unit step function의 Laplace transform을 해보겠습니다. $L(u(t-a)) = \int_{0}^{\infty} e^{-st}u(t-a)dt = \int_{a}^{\infty} e^{-st} \cdot 1 dt = - \frac {e^{-st}}{s}|_{t = a}^{\infty} = \frac {e^{-st}}{s}$ $(s > 0)$ (2) $L(u(t-a)) = \frac {e^{-st}}{s}$임을 알 수 있네요. $\frac {1}{s}$는 $L(.. 2020. 5. 1. 16. 상미분방정식의 미분항과 적분항의 라플라스 변환 1. Laplace Transform of Derivatives 미분항의 Laplace transform은 다음과 같습니다. $L(f') = sL(f) - f(0)$ (1) $L(f'') = s^2L(f) - sf(0) - f'(0)$ (2) 증명해 보겠습니다. 먼저 Laplace transform 공식에 대입해 봅시다. $L(f') = \int_{0}^{\infty} e^{-st} f'(t) dt$ (3) 부분 적분법을 이용해 (3)의 적분항을 풀어줍니다. $\int_{0}^{\infty} e^{-st} f'(t)dt = e^{-st} f(t)|_{0}^{\infty} + s\int_{0}^{\infty} e^{-st} f(t) dt = sL(f) - f(0)$ $\therefore L(f') = sL.. 2020. 4. 28. 이전 1 ··· 7 8 9 10 11 12 13 14 다음