Processing math: 92%
본문 바로가기

Linear_algebra7

30. 대칭행렬, 반대칭행렬, 대각행렬 30.1. Symmetric, Skew-Symmetric, Orthogonal Matrices. Square matrix A=[ajk]가 있을 때, A의 Transpose matrix와도 같다면, 이 Matrix를 Symmetric matrix라고 합니다. A=A,thusajk=akj(1) Skew-Symmetric matrix는 A가 Transpose matrix에 1을 곱한 것과 같은 Matrix를 말합니다. 즉, $\mathbf {A} = -\mathbf {A}^{\top}, \qquad thus \qquad a_.. 2020. 5. 27.
29. 고윳값 문제 적용 29.1. Stretching of an Elastic Membrane. x1x2-plain 위에 존재하는 탄성적인 원형 막 x12+x22=1이 존재한다고 합시다. 이 원 위의 한 점 P(x1,y1)에서 Q(y1,y2)으로 다음과 같은 조건을 만족하면서 늘인다고 합시다. $\mathbf {y} = \begin {bmatrix} y_1\\y_2 \end {bmatrix} = \mathbf {Ax} = \begin {bmatrix} 5&3\\3&5 \end {bmatrix} \begin {bmatrix} x_1 \\x_2 \end {bmatrix};\quad \begin {cases} y_1 = 5x_1 + 3x_2\\y_2 = 3x_1 + 5x_2\end .. 2020. 5. 27.
27. 크래머(Cramer) 공식, 가우스-조던 소거법 (Gauss-Jordan Elimination) 27.1. Cramer's Rule. 변수와 방정식의 개수가 같은 다음과 같은 연립방정식이 있다고 합시다. {a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn(1) (1)을 Matrix 형태로 바꾸면 다음과 같아집니다. $\begin {bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots.. 2020. 5. 22.
26. 행렬식 26.1. Determinant. 2×2, 3×3 matrix의 Determinant는 다음과 같이 정의합니다. D=det $D = \det {A} = \begin {vmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end {vmatrix} = a_{11} \begin {vmatrix} a_{22}&a_{23}\\a_{32}&a_{33}\end {vmatrix} - a_{12}\begin {vmatri.. 2020. 5. 19.