벡터미분1 33. 벡터미적분학 : 미분, 곡선 33.1. Vector Calculus : Derivatives. 3차원위의 임의의 점 $P$를 가리키는 벡터 함수를 다음과 같이 정의합시다. $\mathbf {v} = \mathbf {v}(P) = [v_1(P), v_2(P), v_3(P)] = v_1(P)\mathbf {i} + v_2(P)\mathbf {j} + v_3(P)\mathbf {k}\cdots(1)$ 이 벡터 함수가 점 $t_0$에서 다음을 식을 만족한다고 합시다. $\lim_{t \to t_0} \mathbf {v}(t) = \mathbf {v}(t_0)\cdots(2)$ (2)를 만족하면 이 벡터 함수는 $t = t_0$인 점에서 연속이라고 합니다. 미적분학에서 $t$에서 연속이고 $t$에서 좌미분계수와 우미분계수가 같다면, 점 $t.. 2020. 6. 5. 이전 1 다음