단위 계단 함수1 17. 단위 계단 함수 Unit step function을 다음과 같은 함수로 정의합시다. $u(t-a) = \begin {cases}0 & (t a)\end {cases}$ (1) $t$가 $a$보다 크면 1이고, 작다면 0인 함수인 셈입니다. Unit step function의 Laplace transform을 해보겠습니다. $L(u(t-a)) = \int_{0}^{\infty} e^{-st}u(t-a)dt = \int_{a}^{\infty} e^{-st} \cdot 1 dt = - \frac {e^{-st}}{s}|_{t = a}^{\infty} = \frac {e^{-st}}{s}$ $(s > 0)$ (2) $L(u(t-a)) = \frac {e^{-st}}{s}$임을 알 수 있네요. $\frac {1}{s}$는 $L(.. 2020. 5. 1. 이전 1 다음